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Abstract

Mixture theory is used to develop a model for a #owing mixture of solid particulates and a #uid. Equations describing
the #ow of a two-component mixture consisting of a Newtonian #uid and a granular solid are derived. These relatively
general equations are then reduced to a system of coupled ordinary di!erential equations describing Couette #ow
between concentric rotating cylinders. The resulting boundary value problem is solved numerically and representative
results are presented. Published by Elsevier Science Ltd.
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1. Introduction

In the last several decades, there has been a tre-
mendous increase in fundamental studies in the
"eld of &multiphase #ows' in terms of studying (i)
issues of importance such as design of nuclear reac-
tors, silos, #uidized beds (and combustion related
phenomena), etc., or (ii) trying to understand the
#ow of avalanches or debris, and other natural
phenomena, such as #ow through porous media.
Historically, the emphasis of research has been on
experimental techniques where certain correlations
would be obtained with limited ranges of applica-
bility and use [1].

The modeling of multicomponent #ows has be-
come a subject of considerable interest. The #ow of

mixtures consisting of particles entrained in a #uid
is relevant to a variety of applications such as
#uidized beds and pneumatic transport of solid
particles. Two theories used to model these types of
#uid}solid #ows are averaging and mixture theory
(theory of interacting continua). In the averaging
approach (cf. Refs. [2}4]) point-wise equations of
motion, valid for a single #uid or a single particle,
are modi"ed to account for the presence of the
other components and the interactions between
components. These equations are then averaged
over time or some suitable volume.

The details of this technique and other relevant
issues can be found in books by Hestroni [5],
Meyer [6], Papanicolaou [7], Soo [8,9], Marcus
et al. [10], Kaviany [11], Fan and Zhu [12], etc.

Mixture theory, which traces its origins to the
work of Fick [13], was "rst presented within the
framework of continuum mechanics by Truesdell
[14]. In this approach, the equations and principles
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Nomenclature

a acceleration vector
a
vm

frame-indi!erent relative acceleration
A

i
interaction coe$cients, i"1,2,5

b body force vector
BK
i

dimensionless b's
B
i

constant part of BK 's
B dimensionless parameter
C

i
dimensionless A's

D stretching tensor
D

1
dimensionless parameter

D
2

dimensionless parameter
f
I

interaction force vector
Fr Froude number
F volume fraction dependence of drag
g acceleration of gravity
I identity tensor
L gradient of a velocity vector
L dimensionless parameter
N average volume fraction
p #uid pressure
P dimensionless #uid pressure
Q volumetric #ow rate of mixture
Q

.
mass #ow rate of mixture

Re Reynolds number
T stress tensor
; solid velocity
v velocity vector
< #uid velocity
V dimensionless velocity vector
W spin tensor
x direction of #ow between the plates
x position vector

X dimensionless x
X dimensionless position vector
y direction normal to plates
> dimensionless y

Greek letters
b
i

granular solid coe$cients, i"0,2,4
j
&

second coe$cient of viscosity, #uid
" dimensionless j

&
k #uid viscosity ("rst coe$cient of

viscosity)
l volume fraction of the solid
o density
q dimensionless time
/ volume fraction of #uid

Subscripts
1, f referring to the #uid phase
2, s referring to the solid phase
m referring to mixture

Superscripts
T transpose

* dimensionless quantity

Other symbols
div divergence operator
grad gradient operator
tr trace of a tensor
+ gradient symbol
? outer (dyadic) product
' inner (scalar) product

of the mechanics of a single continuum are general-
ized to include any number of superimposed con-
tinua. The fundamental assumption of the theory is
that at any instant of time, every point in space is
occupied by one particle from each constituent, in
a homogenized sense. The historical development
and details of mixture theory are given in the review
articles by Atkin and Craine [15], Bedford and
Drumheller [16], Bowen [17], and several appendi-
ces in the recent edition of Rational Thermodynamics
[18]. El-Kaissy [19], Homsy et al. [20], Ahmadi

[21,22], Passman and Nunziato [23], Passman
et al. [24], and Massoudi [25,26] have used such an
approach for modeling #uid}solid systems. Both
averaging and mixture theory require constitutive
relations for the stress tensor of each component of
the mixture and for momentum exchange between
the components. The details of mixture theory can
be found in the books by Dobran [27], and Ra-
jagopal and Tao [28].

This paper is concerned with the use of mixture
theory to model solid particles in a #uid. Many



previous models, whether using averaging or mix-
ture theory, have relied upon an assumption that
the solid particles behave as a linearly viscous #uid
[2,19,29] with a viscosity k

4
and a pressure "eld p

4
.

The meaning of p
4
in this context is unclear and it

leads to an indeterminancy in the governing equa-
tions [25]. This indeterminancy is overcome by
assuming a relationship between the solid pressure
p
4

and the #uid pressure p
&

in order to reduce the
number of unknowns. A typical assumption is that
p
4
"p

&
. This assumption may be justi"ed if the

mixture is composed of materials like water and
steam, but is inappropriate when one component is
a granular solid. Some of the two-#uid models are
also inconsistent in that they fail to reduce to the
appropriate single constituent model in the two
extreme limits.

Recently, Massoudi [26] advocated modeling
the stress in the solid constituent of the mixture by
a constitutive expression appropriate for #owing
granular solids. The model described herein incor-
porates constitutive equations for a linearly viscous
#uid and a #owing granular solid. The model is
formulated in a manner such that the mathematical
equations reduce to those describing a linearly vis-
cous #uid when the solid volume fraction goes to
zero and to those describing a #owing granular
solid when the #uid volume fraction goes to zero.
Note that physically the volume fraction of the
solid particles can never be 1.

Passman et al. [24] use mixture theory to study
problems similar to the one analyzed here. Our
approach di!ers signi"cantly from theirs in
that our constitutive expressions for the solid
stress tensor and the interaction forces are dif-
ferent. Moreover, we do not need to introduce
concepts like that of equilibrated forces and stresses
that introduce an additional balance equation. We
"nd that the usual balance laws of continuum
mechanics are su$cient to study the problem under
consideration.

The purpose of this work is to study the e!ects of
interactions and granular material properties on
the #uid velocity, solid velocity, and volume frac-
tion pro"les determined by solving a speci"c
boundary value problem. First, we review brie#y
the basic principles of mixture theory and discuss
constitutive equations for the mixture components

and for the interactions between components. We
then derive and non-dimensionalize the general
equations governing a #owing mixture of a linearly
viscous #uid and a granular solid. The ordinary
di!erential equations describing steady #ow of
the mixture between rotating cylinders are then
presented along with appropriate boundary condi-
tions. Finally, numerically calculated velocity
and volume fraction pro"les are presented and
discussed.

The numerical results are interpreted in terms of
dimensionless parameters depending upon the
granular material properties, the #uid density and
viscosity, the drag coe$cient, and the lift coe$-
cients. The in#uence of the volume fraction on the
velocity pro"les is to cause a relative decrease in
#uid velocity in areas of higher solid concentration
and an increase in areas of lower solid concentra-
tion. The e!ect on the solid is, appropriately, just
the opposite; the solid moves faster in areas of
higher concentration and slower when the concen-
tration is lower. Varying the magnitude of the drag
also yields consistent results in that #uid velocities
decrease and solid velocities increase with increas-
ing drag coe$cient. Lift e!ects represent the in#u-
ence of the velocity pro"les on the distribution of
solid in the #ow. The change in the distribution of
the solid due to lift e!ects results in an increase in
#uid velocity near the plates and a decrease in #uid
velocity where solid concentration has increased (in
the center of the #ow).

2. Preliminaries

A brief review of the notation and basic equa-
tions of mixture theory is presented in this section.
Detailed information, including an account of
the historical development, is available in the
review articles by Atkin and Craine [15] and
Bowen [17].

The mixture of #uid and solid is considered to be
a purely mechanical system. That is, thermal e!ects
and chemical reactions are ignored. The #uid in the
mixture will be represented by S

1
and the granular

solid by S
2
. At each instant of time, t, it is assumed

that each point in space is occupied by particles
belonging to both S

1
and S

2
. Let X

1
and X

2
denote



the positions of particles of S
1

and S
2

in the refer-
ence con"guration. The motion of the constituents
is represented by the mappings

x
1
"v

1
(X

1
, t) and x

2
"v

2
(X

2
, t), (1)

where the subscripts 1 and 2 refer to the #uid and
granular solid, respectively. These motions are as-
sumed to be one-to-one, continuous, and invertible.
The kinematical quantities associated with these
motions are:

v
1
"

D
1
v
1

Dt
, v

2
"

D
2
v
2

Dt
, (2)

a
1
"

D
1
v
1

Dt
, a

2
"

D
2
v
2

Dt
, (3)

L
1
"

Lv
1

Lx
1

, L
2
"

Lv
2

Lx
2

, (4)

D
1
"1

2
(L

1
#LT

1
), D

2
"1

2
(L

2
#LT

2
), (5)

W
1
"1

2
(L

1
!LT

1
), W

2
"1

2
(L

2
!LT

2
), (6)

where v denotes velocity, a acceleration, L is the
velocity gradient, D the stretching tensor, and
W the spin tensor. D

1
/Dt denotes di!erentiation

with respect to t, holding X
1
"xed, D

2
/Dt denotes

the same operation holding X
2
"xed.

Also, o
1

and o
2

are the bulk densities (i.e., the
mass of the component per unit mixture volume) of
the mixture components given by

o
1
"/o

&
, o

2
"lo

4
, (7)

where o
&

is the density of the pure #uid, o
4

is the
density of the solid grains, and l is the volume
fraction of the solid component and / is the volume
fraction of the #uid. For a saturated mixture
/"1!l. The mixture density, o

.
is given by

o
.
"o

1
#o

2
(8)

and the mean velocity v of the mixture is de"ned by

o
.
v"o

1
v
1
#o

2
v
2
. (9)

Conservation of mass: Assuming no interconver-
sion of mass between the two constituents, conser-
vation of mass for the #uid and solid is

Lo
1

Lt
#div(o

1
v
1
)"0 (10)

and

Lo
2

Lt
#div(o

2
v
2
)"0. (11)

Conservation of linear momentum: Let T
1

and
T
2

denote the partial stress tensors of the #uid
S
1

and the solid S
2
, respectively. Then the balance

of linear momentum for the #uid and solid are
given by

o
1

D
1
v
1

Dt
"divT

1
#o

1
b
1
#f

I
, (12)

o
2

D
2
v
2

Dt
"divT

2
#o

2
b
2
!f

I
, (13)

where b represents the body force, and f
I
represents

the mechanical interaction (local exchange of mo-
mentum) between the components.

Conservation of moment of momentum: This prin-
ciple implies that

T
1
#T

2
"TT

1
#TT

2
. (14)

The partial stresses need not be symmetric, how-
ever.

3. Constitutive equations

Depending on what type of mixture we have,
several interesting modeling issues can arise. If
there is a #uid which is di!using through a solid
layer, there are a class of problems in rubber elastic-
ity, porous media, etc., that have been studied (cf.
Ref. [28]). If, on the other hand, we restrict our-
selves to the particulate matter, i.e., an assembly of
solid particles infused with a #uid, where the par-
ticles or granules can now move freely and interact
with the other phase, then the issues of interest
become, for example, the modeling of the stress
tensors, or the interaction forces. In either case the
issue of selecting appropriate and physically mean-
ingful boundary conditions has limited solving
practical boundary value problems.

We assume that the #uid and solid components
are dense enough so that the theory of interacting
continua may be applied. Based on our knowledge
of modeling in the theory of granular materials and
a linearly viscous #uid, it would be natural to



assume all the constitutive functions depend on (cf.
Ref. [30]):

o
1
, o

2
, +o

1
, +o

2
, ++o

1
,++o

2
, v

1
!v

2
,D

1
, D

2
. (15)

Then, using methods that are now standard in
continuum mechanics (cf. Ref. [15,31]), we can ob-
tain restrictions and forms for such constitutive
expressions. Here, we use an alternative approach
which is to postulate the constitutive expressions
by simply generalizing the structure of the consti-
tutive relations from a single constituent theory. In
general, the constitutive expressions for T

&
and

T
4
depend on the kinematical quantities associated

with both the constituents. However, we assume
that T

4
and T

&
depend only on the kinematical

quantities associated with the solid and #uid, re-
spectively. This assumption is sometimes called
`the principle of phase separationa (cf. Ref. [4]) and
was "rst put forward by Adkins [32,33].

In the majority of #uid}solid mixtures, the #uid
is either a gas or water. Therefore, it is appropriate
to assume that the #uid behaves as a linearly vis-
cous #uid, whose constitutive equation is

T
&
"[!p(o

1
)#j

&
(o

1
)trD

1
]I#2k

&
(o

1
)D

1
, (16)

where p is the #uid pressure, j
&

and k
&

are the
viscosities, D

1
is the stretching tensor for the #uid

de"ned in Eq. (5), and I is the identity tensor. If the
#uid is incompressible, then p is one of the un-
known quantities in the problem that would have
to be calculated. If the #uid is compressible, an
equation of state is needed. In general, p, j

&
, and

k
&

are functions of o
1
.

There are basically two di!erent ways of deriving
a constitutive relation for the stress tensor of granu-
lar materials * the continuum approach and the
statistical approach. We use the continuum ap-
proach in our analysis. Goodman and Cowin
[34,35] develop a continuum theory for the stress
tensor of a granular media. Cowin [36] shows that
by including e!ects due to the gradient of the vol-
ume fraction, the Mohr}Coulomb yield criterion
for granular materials can be modeled. Savage [37]
uses standard representation theorems to derive an
expression for T

4
similar to that of Goodman and

Cowin [35]. Savage [38] gives a review of the
expressions proposed for T

4
. Massoudi [26], in

modeling the solid particles in a #uidized bed, uses

an expression similar to that derived by Savage
[37]. In this study, we assume that the stress tensor
for a granular material is given by Rajagopal and
Massoudi [39]

T
4
"[bK

0
(o

2
)#bK

1
(o

2
)grado

2
' grado

2

#bK
2
(o

2
)trD

2
]I#bK

3
(o

2
)D

2

#bK
4
(o

2
)grado

2
?grad o

2
, (17)

where ' denotes the scalar product of two vectors
and ? denotes the outer, or tensor, product of two
vectors. The spherical part of the stress in Eq. (17)
can be interpreted as the solid pressure p

4
. The

material moduli bK
1

and bK
4

are material parameters
that re#ect the distribution of the granular par-
ticles, and bK

0
plays a role analogous to pressure in

a compressible #uid and is given by an equation of
state. The material modulus bK

2
is a viscosity akin to

the second coe$cient of viscosity in a compressible
#uid and bK

3
denotes the viscosity (i.e., the resistance

of the material to #ow) of the granular solids. Re-
cently, Rajagopal and Massoudi [39] have outlined
an experimental/theoretical approach to determine
these material moduli. Based on the available ex-
perimental measurements of Savage [37], Savage
and Sayed [40], and Hanes and Inman [41] and
the computer simulations of Walton and Braun
[42,43], it is clear that granular materials exhibit
normal stress e!ects. The above model (Eq. (17)) is
a simpli"ed version of the model proposed by Ra-
jagopal and Massoudi [39], which predicts the
possibility of both the normal stress di!erences.
Furthermore, Boyle and Massoudi [44], using En-
skog's dense gas theory, have obtained explicit ex-
pressions for the material moduli bK

0
through bK

4
.

There are several interesting and recently pub-
lished articles which deal with many of the issues of
interest in granular materials. One main issue
which is not addressed in the above formulation of
the stress tensor for the granular materials is the
concept of &yield'. Many researchers in the "eld,
perhaps beginning with Bagnold [45], have ob-
served or have proposed that the stress tensor can
be decomposed into two parts: one is for the slow
#ow with the onset of yield, usually referred to as
the frictional #ow regime, and the other is for the
fast or collisional #ow, sometimes referred to as the



1The actual form of this interaction should include the terms
a
1

grado
1
#a

2
grado

2
where a

1
and a

2
are constants. If we

assume that the system is a saturated mixture with incompress-
ible components, this expression simpli"es to A

1
grad l where

A
1
"a

2
!a

1
. Since no information concerning the coe$cients

a
1

and a
2

is available and a term of the same form arises from
the granular solid stress tensor, this term will be neglected in the
present work.

viscous or the kinetic #ow regime (cf. Refs.
[46}49]). For a general approach to the #ow of
granular materials, we refer the reader to the review
article by Hutter and Rajagopal [50], and the
books by Nedderman [51] and Mehta [52].

A mixture stress tensor is de"ned as (cf. Ref. [53])

T
.
"T

1
#T

2
, (18)

where

T
1
"(1!l)T

&
and T

2
"T

4
, (19)

so that the mixture stress tensor reduces to that of
a pure #uid as lP0 and to that of a granular
material as /P0. T

2
may also be written as

T
2
"lTK

4
, where TK

4
may be thought of as represent-

ing the stress tensor for some (quite densely packed)
reference con"guration of the granular material.

The mechanical interaction between the mixture
components, f

I
, is written as [54]

f
I
"A

1
grad l#A

2
F(l)(v

2
!v

1
)

#A
3
l(2 tr D2

1
)~1@4D

1
(v

2
!v

1
)

#A
4
l(W

2
!W

1
)(v

2
!v

1
)#A

5
a
vm

, (20)

where a
vm

is a properly frame invariant measure of
the relative acceleration between the mixture com-
ponents and F(l) represents the dependence of the
drag coe$cient on the volume fraction. The terms
in Eq. (20) re#ect the presence of density gradients,1
drag, `slip-sheara lift, `spina lift, and virtual mass,
respectively. MuK ller's [55] work indicates that
a term of the form A

1
grad l must be included in the

interactions in order to get well-posed problems.
The term multiplying A

3
is a generalization of

Sa!man's [56,57] single particle result "rst pro-
posed in this form by McTigue et al. [58].

4. Governing equations

Eqs. (12), (13), (16), (17), and (20) are combined to
yield the equations describing the #ow of a mixture
of a Navier}Stokes #uid and a granular solid. Vir-
tual mass e!ects are neglected:

o
1C

Lv
1
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#(grad v

1
)v

1D
"(grad l)p!(1!l)grad p

# j
&
[(!grad l)div v
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1
)]
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]
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3
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1
), (21)
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#(grad v
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"gradb
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Eqs. (21) and (22) are written in dimensionless form
as in Ref. [59]
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#(gradV
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&
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where the following dimensionless groups are iden-
ti"ed:

Re"
o
0
u
0
¸

k
&

, "
&
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j
&

o
0
u
0
¸

, Fr"
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¸g
, (25)

BK
0
"

b
0

o
0
u2
0

, BK
1
"

b
1
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o
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A
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o
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0
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4
"

A
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o
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5. Couette 6ow between rotating cylinders

There are many interesting boundary value
problems from an analytical point of view, and

several important simple problems from an experi-
mental point of view. With the formulation of the
problem using the theory of interacting continua,
#ow between two parallel plates and #ow in a pipe
were studied by Johnson et al. [59,60]. Later,
a modi"ed form of the mixture theory was pro-
posed where the e!ect of #uid pressure gradient
was included in the interaction force (cf. Ref. [61]).
Another interesting viscometric #ow is that of
a mixture of #uid and particles between two rotat-
ing cylinders. This #ow, for example, can be experi-
mentally used as a means to measure the viscosity
of a suspension (cf. Ref. [62]).

Consider the couette #ow of a mixture con"ned
to the gap between two in"nitely long, concentric,
rotating cylinders of circular cross section. Let the
wall of the interior cylinder be located at r"1 and
the outer cylinder at r

0
(r
0
'1). If the #ow is

steady and laminar, the velocity pro"les and solids
distribution can be assumed to have the form

V
1
"<(r)eh , V

2
";(r)eh , l"l(r) (29)

in a cylindrical polar coordinate system. The bal-
ance of mass equations are automatically satis"ed
by these assumptions. Virtual mass e!ects and
body forces are neglected.

The balance of linear momentum given by Eqs.
(23) and (24) are greatly simpli"ed by these assump-
tions and may be written in component form as
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where the prime denotes a derivative with respect
to r.

Consider Eqs. (31)}(33) in the limiting case as
l approaches 0. Note that it is assumed, based on
physical considerations, that F(l)P0 as lP0. If
l,0, then, Eqs. (32) and (33) vanish. Eq. (31) be-
comes

<A#
1

r
<@!

1

r2
<"0, (34)

which is consistent with couette #ow of pure #uid
[70].

Eqs. (31)}(33) have to be solved numerically. In
order to do so, the following de"nitions are intro-
duced:
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Though introduced primarily for numerical con-
venience, these dimensionless parameters have
physical interpretations. D

1
is the ratio of the drag

force exerted on the #uid by the solid to the viscous
forces within the #uid phase. D

2
is the ratio of the

drag force exerted on the solid by the #uid to the
viscous forces within the solid component. B

1
and

B
2

are combinations of the material coe$cients
from the granular solid constitutive equation; they
a!ect the distribution of solid in the #ow but do not
directly in#uence the velocity pro"les of either #uid
or solid. L

1
incorporates the e!ect of slip-shear lift

into the equations; L
2

is the spin lift coe$cient.
The #uid and solid velocity "elds exert an e!ect on
the distribution of the granular solid only when
L

1
O0 and/or L

2
O0. The parameter P is the

ratio of the centrifugal forces to the forces gener-
ated by solid}solid interactions within the granular
material. With these de"nitions, Eqs. (31)}(33) are
rewritten as
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Note that when L
1
"L

2
"0, Eq. (39) is still

coupled to Eqs. (37) and (38) through the velocity
"eld. Based on Batchelor's [63] result for sedi-
mentation of a dilute suspension of spheres, Drew
[64] proposes the following approximation for
F(l):

F(l)"l(1#6.55l). (40)

This expression is used here with the understanding
that it is not valid as lPl

.
, where l

.
is the

maximum packing fraction of the granular mate-
rial.



5.1. Boundary conditions

Within the context of mixture theory, boundary
conditions impose an added di$culty. In general,
boundary conditions can have a mathematical or
a physical origin. Whether we specify the displace-
ment vector, or the velocity vector, or velocity
gradient, or the traction, or the stress tensor of
a given phase or of the mixture, would depend on
the given problem. Many times the choice is clear,
however, in case of a mixture with free surface, or
a mixture where slip at the boundary is possible, the
choice is not clear. Furthermore, in cases where
a constitutive relation is used to describe a non-
linear material, new and additional boundary con-
ditions may arise due to the higher order terms in
the constituive relation. These issues have limited
the application of mixture theory to problems of
practical interest. It is only in the last decade
or so that Rajagopal and co-workers (cf. Ref. [28])
have attempted to solve a series of interesting
problems.

A look at Eqs. (30)}(33) would reveal that two
boundary conditions are necessary for each velo-
city component, two boundary condition for the
volume fraction of the solid particles, and one
boundary condition for the #uid pressure. In gen-
eral, the #uid pressure is eliminated through cross-
di!erentiation; this however, increases the order of
the equations, and as a result more boundary con-
ditions are needed. In many cases, physical bound-
ary conditions such as the #ow rate of the mixture,
or the volumetric #ow rate, or... can also be used (cf.
Ref. [65]). For a recent review of the issues of
interest in boundary e!ects in granular materials,
the reader is referred to Zheng and Hill [66]. For
the mixture theory, as presented here, the details of
the selection and appropriateness of the boundary
conditions are given in Refs. [59,60,68].

Adherence boundary conditions are imposed on
both the constituents at both cylinder walls:

;(1)"<(1)"=
*
, (41)

;(R
0
)"<(R

0
)"=

0
, (42)

where=
*
is the velocity of the inner cylinder and

=
0

is the velocity of the outer cylinder.

The appropriate conditions on l are the bound-
ary value of l at one cylinder wall and a prescribed
average volume fraction, de"ned as

N"2pP
R0

1

lrdr. (43)

5.2. Results

Eqs. (31)}(33) are solved using the collocation
code COLSYS [67]. COLSYS was chosen for this
problem after comparison with multiple shooting
and "nite di!erence codes. The collocation method
proved superior to the other methods in both the
ability to calculate solutions and the computer time
required to calculate them. Solutions obtained us-
ing di!erent methods matched each other closely in
cases where more than one method was e!ective.

Collocation is implemented by COLSYS using
B-spline basis functions. The error in the calculated
solutions is estimated by mesh halving and checked
against user-prescribed tolerances. The mesh points
are then automatically redistributed to roughly
equalize the error in each subinterval. Error toler-
ances on the volume fraction, solid velocity, #uid
velocity, and their derivatives were speci"ed as
10~5 for the solutions given below. The integral
condition on the volume fraction was implemented
using a secant shooting method to re"ne initial
guesses for the value of l at the pipe wall.

There are some restrictions on the values the
parameters may take. Clearly, the drag coe$cient,
Reynold's number, and material viscosities must be
greater than zero and therefore D

1
and D

2
must

also be greater than zero. Similarly, the lift coe$-
cients L

1
and L

2
must be less than zero for the

direction of lift to match experimental observations
[69]. Based on results obtained for #ow between
parallel plates [59] it is assumed that B

1
#B

4
(0.

Since B
0

is also less than zero, B
1

is greater than
zero. B

2
is also assumed to be greater than zero.

The parameter P must always be less than zero. In
summary, D

1
,D

2
,B

1
, and B

2
are all greater than

zero; L
1
,L

2
, and P are less than zero.

A few representative velocity and volume frac-
tion pro"les are shown here, with a discussion
of the e!ects of the parameters. Though any combi-
nation of velocities may be speci"ed for the two



Fig. 1. Couette #ow with rotating inner cylinder: e!ect of D
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on
#uid velocity pro"le. D
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Fig. 2. Couette #ow with rotating inner cylinder: e!ect of B
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on
volume fraction, B
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Fig. 3. Couette #ow with rotating inner cylinder: e!ect of P on
volume fraction. D
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Fig. 4. Couette #ow with rotating inner cylinder: e!ect of lift on
volume fraction. L

2
"0, N"0.3294, D
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B
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"4, and B
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"4, and P"!1.

cylinders, for convenience only two cases are con-
sidered. Figs. 1}4 are obtained with =

*
"5 and

=
0
"0. Figs. 5}8 are the corresponding results for

=
*
"0 and =

0
"5.

The parameter D
1

a!ects the #uid velocity pro-
"le as shown in Fig. 1. Increasing values of D

1
re-

sults in a decrease in the #uid velocity. The solid
velocity also decreases due to the coupling of the
two equations. Physically, an increase in the value
of D

1
corresponds to either an increase in the drag



Fig. 5. Couette #ow with rotating outer cylinder: e!ect of D
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on
#uid velocity pro"le. D
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Fig. 6. Couette #ow with rotating outer cylinder: e!ect of B
2

on
volume fraction. B
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Fig. 7. Couette #ow with rotating outer cylinder: e!ect of P on
volume fraction. D
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Fig. 8. Couette #ow with rotating outer cylinder: e!ect of lift on
volume fraction. L

2
"0, N"0.3422, D
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2
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B
1
"4, B

2
"4, and P"!1.

coe$cient or an increase in the Reynolds number
or both.

Increasing D
2

(not shown) results in an increase
in #uid velocity and a corresponding increase in
solid velocity. Physically, an increase in the value of

D
2

corresponds to either an increase in the drag
coe$cient or a decrease in the non-dimensional
number B

3
.

Fig. 2 shows plots of volume fraction versus r for
some representative values of B

1
and B

2
(with



L
1
"L

2
"0). Note that an integral condition (cf.

Eq. (43)) is used and the areas under each of the
curves are the same, although the boundary condi-
tion at the outer tube wall is di!erent for each
curve.

Fig. 3 shows the e!ect of P on volume fraction.
A larger value of P results in a greater portion of
the granular solid collecting near the outer cylinder
wall (see Fig. 3). Physically, an increase in the
magnitude of P corresponds to an increase in o

4
,

the density of the granular solid. The change in
solid distribution has relatively little e!ect on the
velocity pro"les.

Fig. 4 shows a representative result from a para-
metric study of the e!ects lift on the volume frac-
tion. Spin lift and slip-shear lift appear to have
essentially the same e!ect on the #ow. Increasing
L

1
and/or L

2
, and thus the signi"cance of lift,

causes the granular solid to move away from the
inner wall and collect towards the outer wall.
Again, the changes in volume fraction due to
changing the lift coe$cient have relatively little
e!ect on the velocity pro"les.

Figs. 5}8 show result analogous to those dis-
cussed above for a stationary inner cylinder and
a rotating outer cylinder. The parameter D

1
a!ects

the #uid velocity pro"le as shown in Fig. 5. Increas-
ing values of D

1
results in an increase in the #uid

velocity. The solid velocity also increases due to the
coupling of the two equations. Note that these
results are opposite to those in Fig. 1 for a rotating
inner cylinder.

Increasing D
2

results in a decrease in #uid velo-
city and a corresponding decrease in solid velocity.
Physically, an increase in the value of D

2
corre-

sponds to either an increase in the drag coe$cient
or a decrease in the non-dimensional number B

3
.

Note again the reversal of the e!ects for the rotat-
ing outer cylinder as compared to the rotating
inner cylinder. The solid leads the #uid when the
outer cylinder is rotating; the #uid leads the solid
when the inner cylinder is rotating.

Fig. 6 shows plots of volume fraction versus r for
some representative values of B

1
and B

2
(with

L
1
"L

2
"0). Note that an integral condition (cf.

Eq. (43)) is used and the areas under each of the
curves are the same, although the boundary condi-
tion at the outer tube wall is di!erent for each

curve. Though B
1

and B
2

appear to cause the
same relative changes in the volume fraction curves
regardless of which cylinder is rotating, the overall
shape of the curves are di!erent in Fig. 6 versus
Fig. 2.

Fig. 7 shows the e!ect of P on the volume frac-
tion. A larger value of P results in a greater portion
of the granular solid collecting near the outer cylin-
der wall (see Fig. 7). Physically, an increase in the
magnitude of P corresponds to an increase in o

4
,

the density of the granular solid. The change in
solid distribution has relatively little e!ect on the
velocity pro"les. The change in the volume fraction
pro"le is more pronounced when the outer cylinder
is rotating than when the inner cylinder is rotating
(Fig. 3).

Fig. 8 shows a representative result from a para-
metric study of the e!ects lift on the volume frac-
tion. Increasing L

1
and/or L

2
, and thus the

signi"cance of lift, causes the granular solid to
move away from the inner wall and collect towards
the outer wall. This e!ect appears much less signi"-
cant for a rotating outer cylinder than for a rotating
inner cylinder (see Fig. 4). Again, the changes
in volume fraction due to changes in the lift coe$-
cient have relatively little e!ect on the velocity
pro"les.
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